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Path to Exascale: some examples, their discovered
“gems,” and implications for programming models

GTS — magnetic fusion particle-in-cell (PIC) code
— Already optimized and hybrid (MPI + OpenMP)
— Consider advanced hybrid techniques and PGAS

GPU Screening of Carbon Capture Materials
— Optimization for GPU

PIR3D Three-dimensional Flow Solver
— Hybridization via expert + application scientist
NBP’s NAS Parallel Benchmarks in various languages
— Comparison of MPI, Hybrid, and UPC
fvCAM Climate Benchmark
— Hybrid for reducing memory
S3D — Turbulent Combustion
— Hybridization for heterogeneous processors
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GTS is an optimized PIC magnetic fusion (real) application

* Gyrokinetic Tokamak Simulation (GTS) code

* Global 3D Particle-In-Cell (PIC) code to study microturbulence
& transport in magnetically confined fusion plasmas of
tokamaks

* Microturbulence: complex, nonlinear phenomenon; key to
modeling loss of confinement in tokamaks
e GTS: Highly-optimized Fortran90 (+C) code

e Massively parallel hybrid (MPI+OpenMP) parallelization :
tested and optimized on multiple platforms

GTS Results from NERSC Petascale Post-doc Robert Preiss| with advice
from NERSC staff and Cray Research, code from PPPL (Ethier, Wang)



Gem: Two different hybrid models in GTS: Using traditional
OpenMP worksharing constructs and OpenMP tasks

MPI _Init :
| [‘ | MPI Init
MPI process MPI process MPI process I | |
Start l l l MPI process MPI process MPI process
1h'eac§. . OpenMP- . . \Con‘p- tsht?;;d\ﬁ l l l \
parallel do <+ utation J OpenMP- ) i Comp-
Merge__,' y : y_ V¥ W | Tasking I “7 utation
reads ! T
thread i i ?
) I I i MPlcomm-  Merge__, ¥—Y—¥ Y x= Y Ly V¥ \"4
A 4 A 4 A 4 unication threads
MPI comm-
b W unication

MPI_Finalize

MPI Finalize

NEW OpenMP Tasking Model gives a new way to achieve more parallelism from hybrid
computation. OpenMP subteams might also be a way to do this.*

OpenMP tasks enables us to overlap MPI communication with independent computation
and therefore the overall runtime can be reduced by the costs of MPI communication.

Take-Away: This experience supports the development of advanced capabilities for OpenMP

*Barbara M. Chapman, Lei Huang, Haoqgiang Jin, Gabriele Jost, and Bronis R. de Supinski: Toward Enhancing OpenMP’s
Work-Sharing Directives. In proceedings, W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 645-654, 2006.



OpenMP tasking version outperforms original shifter,
especially in larger poloidal domains
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Performance breakdown of GTS shifter routine using 4 OpenMP threads per MPI
process with varying domain decomposition and particles per cell on Franklin Cray XT4.

MPI communication in the shift phase uses a toroidal MPI communicator (constantly 128)
Large performance differences in the 256 MPI run compared to 2048 MPI run!

Speed-Up is expected to be higher on larger GTS runs with hundreds of thousands CPUs
since MPI communication is more expensive
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GEM: A new “shifter algorithm” using a combination of MPI, OpenMP,
and CAF gives significant performance improvement on 130K cores
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Robert Preissl, Whichman, Long, Shalf, Ethier, Koniges, SC11 Best Paper Nominee
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Take-Away: Requires interoperability of MPI, OpenMP, and PGAS



GPU Monte Carlo Algorithms for Molecules within a
Microporous Framework

Post-doctoral Researcher: Jihan Kim, Pls: Berend Smit, Martin Head-Gordon, LBNL

The goal of this work is to develop GPU Monte Carlo algorithms to model mobile
gases within framework molecules for capture of CO,.

Graphical illustration of methane molecules (grey- Dirac GPU cluster (rack) at NERSC (44 Tesla
black) inside of a zeolite MFI framework (red). The C2050 Fermi cards)

void spaces within the framework are represented by
light circles.



GPU Computational Screening of Carbon Capture Materials

GEM: Screening of over 5 million materials would have taken many years of CPU-time. GPU
code developed has reduced this to a few weeks of CPU-time.

Take-Away: Can you beat this? Certain applications are “rocking” with GPUs

(1) GPU screening code

— Characterize and screen a large database
of zeolite structures to determine the
optimal frameworks for carbon capture

— Computes the Henry coefficient, which
characterize selectivity at low pressure

(2) GPU code structure
— Energy grid construction (GPU) bottleneck
— Pore Blocking (CPU)
— Widom Insertion Monte Carlo cycles (GPU)

(3) Performance
— Compute Bound

— Over 50x speedup compared to single
CPU core
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Histogram of the Henry coefficient distribution for
carbon dioxide and methane gases inside 193 IZA zeolite
structures



OpenMP Hybridization of PIR3D

* Motivation:
* Increase performance by taking DO 2500 IX=1,LOCNX
advantage of idle cores within one shared | ....
memory node ISomp parallel do private(iy,rvsc)
* OpenMP Parallelization strategy: DO 2220 1Z=1,NZ
* Identify most time consuming routines DO 2220 1Y=1,NY
* Place OpenMP directives on the time VYIX(IY,1Z) = YF(IY,1Z)
consuming loops VY_X(I1Z,1Y,1X) = YF(1Y,1Z)
* Only place directives on loops across RVSC = RVISC_X(IZ,1Y,1X)
undistributed dimension DVY2_X(IZ,1Y,IX) =
* MPI calls only occur outside of parallel DVY2_X(IZ1IY,1X) - (VYIX
regions: No thread safety is required for (1Y,12)+VBG(I1Z)) * YDF(IY,1Z)
MPI library +RVSC*YDDF(IY,1Z)
* Requirements: 2220 CONTINUE
* Thread safe LAPACK and FFTW Routines | !Somp end parallel do
* Note FFTW initialization routine not
thread safe: Execute outside 2500 CONTINUE

From Parallelization of a 3-D Flow Solver for Multi-Core Node Clusters: Experiences Using Hybrid MPl/OpenMP
In the Real World, Gabriele Jost, University of Texas at Austin; Bob Robins, NorthWest Research Associates



GEM: All configurations benefit from hybridization, but some more
than others: Hybrid Timings for Case 512x256x256
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Hybrid Timings for Case 1024x512x256

Case 1024x512x256 on Cray XT5
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The eight NAS parallel benchmarks (NPBs) have been
written in various languages including hybrid for three

MG Multigrid Approximate the solution to a three-
dimensional discrete Poisson equation using
the V-cycle multigrid method

CG Conjugate Estimate smallest eigenvalue of sparse SPD

Gradient matrix using the inverse iteration with the
conjugate gradient method

FT Fast Fourier Solve a three-dimensional PDE using the

Transform fast Fourier transform (FFT)

IS Integer Sort Sort small integers using the bucket sort
algorithm

EP Embarrassingly | Generate independent Gaussian

Parallel random variates using the
Marsaglia polar method

BT Block Tridiagonal | Solve a system of PDEs using 3 different MZ

SP Scalar Pentadiag | algorithms

LU Lower/Upper




GEM: Significant improvement in Memory Usage is possible for
new hardware—Comparison of OpenMP, UPC, MPI using NPB’s

1.2

MPI M UPC OpenMP

1.0

0.8 | —
0.6 - - - L
0.4 — — — — — — — -
0.2 — — — — — — — -
0.0 | | i ]

EP LU BT SP CG IS MG

FT

Relative Memory Usage to MPI

MPI uses most memory, UPC uses slightly less

® OpenMP savings due to direct data access

Take-Away: We need more examples such as these
In different languages to spur development

Experiments by H. Shan, LBNL



Performance properties of languages is an evolving
issue as compilers and techniques improve
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® Similar performance for CG, EP, LU, MG

® For FT, IS, OpenMP delivers significantly better
performance due to efficient programming



Correct implementation is required for performance

GASNet vs MPI Latency on BG/P
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GASNet support for XE6 makes a critical difference

GEM: Significant improvement of GASNet over Gemini to GASNet over MPI conduit on
Cray XE6

* AMMedium latency
* Gemini-conduit - 1.25 uSec
* MPIl-conduit - 1.9 uSec
* AMLong throughput
* Gemini-conduit - ~5 GB/sec at 64KB message size
* MPI-conduit - ~ 2 GB/sec at 512 KB message size
* Put
* Gemini-conduit - 1.25 uSec
* MPI-conduit - 4 uSec
* Get
* Gemini-conduit - 2.2 uSec
* MPI-conduit - 4 uSec

Take-Away: To get good performance from a language, we must have the
appropriate infrastructure/implementations

From: The Berkeley GASNet and UPC Group, Lawrence Stewart Serissa Research



Memory (only) Gem: Hybrid Performance of Climate Code
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OpenMP threads / MPI tasks

NERSC Hopper from Cray Center of Excellence
Nick Wright, Marcus Wagner, Tony

Drummond, John Shalf

Take away: Sometimes performance is better,
sometimes not. Almost always memory reduction.
Hybrid performance not automatic — requires human.



Cray Study: OpenMP accelerator extensions yield promise
for ease of transition to heterogeneous architectures

* OpenMP accelerator extensions

— Are the directives powerful enough to allow the
developer to pass information on to the compiler

— Can the compiler generate code that get performance
close to Cuda

* Application of this method to S3D combustion code
— Part of Cray Center of Excellence, John Levesque

— Requires a combination of programmer intervention
for code re-arrangement and automatic



GEM: S3D yields performance and portability

Original OpenMP Cuda Fortran Directive Directive

12 cores best out of Approach Approach
24 Restructured

Kernel .0417 Seconds .0061 Seconds .0113 Seconds .0067 Seconds
Only

e|n S3D all of the arrays used in this computation will reside on the
accelerator prior to the invocation of the kernel.

Take away: This appeals to application programmers —
one version of code for multiple machines. Again,
human intervention is required.

Courtesy John Leveque, Cray Center of Excellence



Current Application Path-Hybrid MP1/OpenMP Codes are
becoming increasingly prevalent; is this enough?

 OpenMP/MPI Hybrid Codes provide these opportunities:
— Lower communication overhead
— Lower memory requirements
— Provide for flexible load-balancing on coarse and fine grain
— Increase parallelism

* PGAS
— Can use customized communication to avoid hot-spots
* But UPC Collectives do not support some communication patterns
— Benefits of message aggregation depends on the arch./interconnect
— UPC - Shared Memory Programming
* Less communication with reduced memory utilization
— Mapping BUPC language-level threads to Pthreads and/or Processes
* Mix of processes and pthreads often gives the best performance

e Other Models must answer — Can You Beat This?

— Concurrent Collections? Automatic tools for CUDA? New
parallelism models and languages?



